Evaluating Success for an Intramountain Range Transplant of Bighorn Sheep in Southwestern Montana

JULIE CUNNINGHAM, Montana Fish, Wildlife and Parks, 1440 South 19th Street, Bozeman, MT, USA 59718

HOWARD BURT, Montana Fish, Wildlife and Parks, 1440 South 19th Street, Bozeman, MT, USA 59718

ROBERT GARROTT, Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, Bozeman, MT, USA 59717

KELLY PROFFITT, Montana Fish, Wildlife and Parks, 1440 South 19th Street, Bozeman, MT, USA 59718

CARSON BUTLER, Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, Bozeman, MT, USA 59717

ETHAN LULA, Fish and Wildlife Ecology and Management Program, Ecology Department, Montana State University, Bozeman, MT, USA 59717

JENNIFER RAMSEY, Montana Fish, Wildlife and Parks, 1440 South 19th Street, Bozeman, MT, USA 59718

KERI CARSON, Montana Fish, Wildlife and Parks, 1440 South 19th Street, Bozeman, MT, USA 59718

ABSTRACT: Montana Fish, Wildlife and Parks (MFWP) performed three bighorn sheep transplants within the Madison Mountains of southwest Montana to repopulate a historic, but unoccupied, winter range. The existing (source) herd had endured and recovered from several all-age die-offs and numbered approximately 200 animals prior to the start of transplants. An unoccupied winter range approximately 14 miles north was chosen as the release site due to a combination of biological and social factors. MFWP and Montana State University captured bighorn sheep using a drop net, and moved 52, 22, and 23 bighorn sheep in wintertime 2015, 2016, and 2018 (total = 97 bighorn sheep). The drop net enabled selection of social and family groups for transplant. We transplanted 16 lambs, 57 ewes, 23 rams, and 1 unclassified sheep. Older rams (>3.5) were avoided in transplant to prevent them from injuring lambs or smaller sheep in the trailer during transport. A sample of released bighorn ewes were fitted with LOTek Lifecycle GPS collars at each transplant (10 in 2015, 6 in 2016, and 11 in 2018), which provided location data daily for up to 3 years. Mortalities included 4 predations, 2 injuries, and 1 unknown cause of death. Mortalities can be compared to non-transplanted, collared study animals from the source herd (8 mortalities across 32 VHF and GPS collars on ewes 2012-2018). Transplant success, defined by the percentage of bighorn sheep which remained in the transplant area after 1 year (i.e., did not return to the capture site) varied from approximately 20% in 2015 to approximately 80% in 2016, with 2018 still underway. Released bighorn sheep did not necessarily stay together in groups and individual movements varied across an area of approximately 625 km². Results suggest managers can use intramountain range captures and transplants to achieve success in expanding occupiable winter ranges and establishing a
desirable metapopulation structure. Intramountain transplants have advantages of using local animals familiar to the ecological landscape and local predator suite, and with common movement behaviors (i.e., migratory or non-migratory strategies) and pathogen communities. Managers may have to capture and release for several years to see success.

Biennial Symposium of the Northern Wild Sheep and Goat Council 21:107-108; 2018

KEYWORDS Bighorn sheep; *Ovis canadensis*; intramountain transplant; translocation evaluation; Madison Range; Montana.